第40章 自然语言处理中Transformer架构的改进与应用拓展(2 / 2)
结合卷积操作的局部感知能力和Transformer的全局建模能力,提高模型性能。二)预训练策略创新
4.采用更大规模的数据集
例如使用互联网上的海量文本数据进行无监督学习。
5.设计更有效的预训练任务
如掩码语言模型(MaskedLanguageModel)的改进、对比学习等。
(三)优化训练方法
1.采用自适应学习率
根据模型的训练情况动态调整学习率,加速收敛。
2.混合精度训练
结合半精度和单精度计算,减少内存占用并提高训练效率。
四、Transformer架构的应用拓展
(一)机器翻译
Transformer架构在机器翻译任务中表现出色,通过改进可以进一步提高翻译质量,特别是在处理长文本和多语言翻译方面。
(二)文本摘要
能够从长篇文本中提取关键信息,生成简洁准确的摘要。
(三)问答系统
理解用户的问题并提供准确的答案,改进后的Transformer架构可以更好地处理复杂的问题和多样化的知识领
↑返回顶部↑